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Abstract— On January 3, 2020, Chinese health officials identified an outbreak of pneumonia in the Chinese city of Wuhan. The virus 

swiftly spread to the majority of countries, infecting a substantial portion of the population. On September 28, 2020, reports of nearly a 

million deaths were made globally. Every day, huge amounts of data were gathered, and data analytics became crucial for identifying 

patterns and identifying how the infection spread. Numerous predictive models were employed to assess the impact of 

non-pharmaceutical interventions (NPIs) on the spread of SARS-CoV-2. Some of the models also predicted daily new cases and mortality 

patterns. The SEIR model is one of many that were employed. The SEIR approach calculates the end results using differential equations 

and requires other programming language skills to visualize the results, making it difficult for ordinary people to use predictive model. 

We created a basic mathematical model that is straightforward to apply, and the results show that it is successful in controlling pandemic 

spread. The proposed approach employs a predefined set of logics that are deployed in accordance with current developments. The 

present trend is established by comparing the volume of instances recorded in 7 days with the volume recorded in the previous 7 days. 

This model is used to forecast short- term trends, and the pre-defined set of logic advises appropriate actions to restrict illness spread 

during a pandemic. 
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I. INTRODUCTION 

The Chinese city of Wuhan was the site of the first 

detection of the COVID-19 pandemic in January 2020. In a 

short amount of time, the virus spread to nearly every region 

on Earth. Lockdowns, travel bands, stay at home, isolation, 

hand hygiene, and face masks were among the control 

methods employed to slow down the pandemic’s spread. 

Almost 7 million individuals had passed away by the end of 

September 2023. Numerous nations’ economies were 

devastated by COVID-19. Countries like Bangladesh, 

Pakistan, and Sri Lanka are a couple of such instances. The 

illness has resulted in fresh advancements every three months 

since its first detection. Thousands of demonstrators on the 

streets of China, India, and the United States of America 

pressured government authorities to ease restrictions. As a 

result, the infection and mortality rates increased. In the most 

developed countries, hospitals were overflowing with 

patients, and dead bodies were found lying on the streets, 

ready to be buried. It took nearly two years for the situation to 

improve globally. Every country has learned the value of 

pandemic preparedness as a result of the COVID-19 

pandemic. 

 During the COVID-19 epidemic, predictive models such 

as SEIR, ARIMA, and automated time series machine 

learning algorithms were employed to forecast future trends. 

The majority of the model’s predictions and 

recommendations failed to stop the virus from spreading. 

Recent days have witnessed an overwhelming amount of 

criticism focused on model projections and the wildly varied 

forecasts regarding the number of coronavirus illnesses [1]. 

After looking into what caused these models to fail, we found 

that underreporting of cases, inaccurate data, and effective 

government actions to restrict spreading are the main causes 

of the difference in projections [2]. Furthermore, there is a 

great deal of complexity involved in understanding and 

employing these models. It requires advanced mathematical 

knowledge, as it uses ordinary differential equations and 

knowledge of programming languages like R or Python to 

visualize the output. The objective of this study is to develop 

a simple mathematical model to predict short-term trends and 

to suggest optimal measures to control the spread of 

infections during a pandemic. The proposed model is named 

the IRP model, as this model helps in identifying the 

infectiousness of the disease, recommends NPIs, and predicts 

values required for forecasting. 

II. BACKGROUND 

Numerous computational and mathematical models were 

employed throughout the pandemic to predict the daily 

number of new cases and fatalities. The majority of the 

forecasts failed, and the model's predictions were widely 

criticized. Moreover, the following list describes the 

challenges of using predictive models. 
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A. Complex nature 

A simple epidemic model called the SIR model estimates 

the number of infectious disease cases that could develop 

over time in a closed community. The compartment model 

typically consists of three boxes that divide the population 

into multiple separate groups. 

S - People that are susceptible to the epidemic. 

I – Already infected people who can spread the disease to 

the S. 

R - People that are recuperated or deceased [3]. 

The SIR model detailed here is the most basic model used 

to forecast new cases every day throughout the pandemic. 

The simplest model is perhaps the most difficult for regular 

people to comprehend. From an individual understanding 

standpoint, the fundamental ideas and ODEs (ordinary 

differential equations) employed are radical.   

B. Duration of model construction and testing 

Building a dependable model takes longer than six months. 

Analyzing and defining the goals prior to model construction 

necessitates extensive debate. In order to complete the 

process, a number of steps must be completed, including 

locating sources of data, selecting pertinent data for analysis, 

pre-processing the data, figuring out a methodology, and 

creating the model. The model is then tested using test data, 

and the results are verified using real data. 

C. Associated costs 

Developing predictive computational models is incredibly 

expensive. There are two different kinds of costs involved. 

One is the price of hiring knowledgeable data scientists to 

create and evaluate a model. The second is the expense of 

configuring the environment in which the model runs. 

D. Skills required 

These models require sophisticated computational and 

mathematical knowledge to construct and run. Among the 

skills are knowledge of differential calculus, experience with 

data collection and preparation, familiarity with the R and 

Python programming languages, etc. 

To overcome these challenges, we have proposed the IRP 

model. 

III. METHODS  

The proposed model is experimental and uses quantitative 

methods to solve the issue. It also uses simple mathematical 

formulas to calculate the volume of cases, the change in 

volume of cases, and to predict future trends. The proposed 

model uses the data gathered for a period of 7 days and 

iterates through many cycles until the infectious disease is 

contained. This model has the ability to predict short-term 

trends. A set of pre-defined logical assumptions is used to 

predict trends and suggest optimal interventions to control 

the spread of the infection. This approach may be used to 

track and control illnesses that have originated in the nation 

or have been imported from other countries. The proposed 

model consists of five phases and each phase of this model is 

explained using illustrations. 

IV. THEORY / CALCULATIONS 

The infectious disease in this model progresses through 

multiple phases. Below is a discussion of this model’s several 

phases.  

Infection Discovery Phase 

 A new infection is identified.  

 The infection is monitored for a period of 7 days 

to identify similar infections in the population.  

 The total volume of cases identified is calculated 

on the 7th day from the day of infection 

discovery.  

 The observation recorded is plotted using a line 

chart.  

Illustration  

Figure [1] explains the first iteration.  

Total number of cases recorded: 2715. 

 

 
Figure 1: Discovery Phase 

Observation Phase  

 The infection is closely observed for the next seven 

days.  

 The total volume of cases identified is calculated on 

the 7th day.  

 The observation recorded is plotted using a line 

chart.  

 The change in volume of cases is identified by 

calculating the difference in the volume of cases 

recorded in the last two iterations.  

 The initial forecast for the next 7 days is created by 

adding the per-day increase to the daily observations 

recorded in the last iteration. 

 The percentage increase is calculated using this 

formula [Final Value - Starting Value / Starting 

Value] * 100.  

 If the increase is above 10%, the decision phase is 

initiated. 

Illustration  

Figure [2] explains the second iteration.  
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Figure 2: Observation Phase 

 

Total volume of cases recorded: 5,140. 

Change in volume of cases: 5,140 - 2,715 = 2,425 

Per-day increase 2425 /7= 346 (rounded off) 

Percentage Increase: [5,140 - 2,715 / 2,715] * 100= 89.3%  

 

Figure [3] shows the initial forecast. 

 

 
Figure 3: Initial forecast 

Decision Phase  

 In this phase, based on the increase in the 

percentage of new cases, a decision is made to 

select a set of suitable actions from the xAUS 

table shown in figure [4] to control the spread of 

infection.  

 The xAUS table parameters are derived from 

real-time pandemic scenarios. Each parameter is 

assigned a value. The values of these parameters 

shown in figure [5] are determined based on their 

ability to control the spread of infection during a 

pandemic.  

 After selecting the logic, predictions based on the 

xAUS table are plotted using line charts for the 

next 6 iterations, each with an observation for 7 

days.  

 Post-implementation, the situation is monitored 

for another 7 days, and the volume of cases 

recorded is calculated on the 7th day. 

 

 
Figure 4: xAUS Table 

 

 

 
Figure 5: xAUS parameter values 

 

Illustration 

Figure [6] shows the selection criteria based on the case 

increase percentage.  

 

 
Figure 6: xAUS - Infection classification 

 

At this point, the percentage increase in new cases is 

identified as 89.3%. From the table, we can confirm that it is 

a highly infectious disease, and based on the availability of 

medicine and vaccines, an appropriate set of actions is 

selected. For the purpose of illustration, we have considered 

the availability of medicine as “yes” and the availability of 

vaccines as “no”. 

Figure [7] shows the selected logic with recommended 

actions. 

 

 
Figure 7: xAUS - Recommended actions 

 

Raising awareness, isolating the affected, social distancing, 

wearing face masks, practicing good hand hygiene, staying at 

home, closing schools, calling off public events, imposing 
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limitations on gatherings in public, limiting internal travel, 

and restricting travel outside are a few of the measures. The 

user will be required to select the expected adherence index 

after choosing the recommended actions. For each 

recommended set of actions, the expected adherence index 

(EAI) levels are displayed in Figure [8]. EAI depends on the 

stringency score. We take the projected adherence index to be 

between 30 and 60% for the purpose of illustration. 

 

 
Figure 8: xAUS EAI 

Predictions Phase 

 Using the prediction values listed in the xAUS table, 

we may forecast the new cases for the following 

iteration after assuming the EAI value. The model 

forecasts a 51.5% drop in the number of new 

instances in the following iteration in this example.  

 Based on the prediction values found in the xAUS 

table, the original projected values from the 

observation phase will be updated with new values.  

 Forecasts are made for the next six cycles.  

 Line charts are created to visually present the data. 

Illustration  

Based on the values anticipated by the model, the forecast 

for the following six iterations can be seen in Figure [9]. The 

original values predicted during the observation phase are 

adjusted with these values. 

 

 
Figure 9: Forecast for next 6 iterations. 

 

Figure [10] shows the line chart of the forecast for the next 

six iterations. 

 
Figure 10: Forecast - Line chart 

Monitoring Phase 

 During the next seven days, the situation is observed, 

and daily case reports are made.  

 Compare this cycle’s outcomes with the prediction 

plots made with the xAUS table.  

 If the data show a drop in the number of cases, use 

the same procedure for the remaining iterations until 

the infection is under control.  

 An examination of the EAI is done if the outcome is 

negative; if the EAI is met, a decision phase is 

started, and a new set of logic is chosen. The 

updated forecast based on the xAUS table is plotted 

for the next six iterations, each with a seven-day 

observation period, based on the suggestions of this 

logic and non-pharmaceutical interventions. 

 If the EAI is not met, select a lower EAI score, plot 

the forecast for the next six iterations, and repeat the 

process until the volume of new cases decreases. 

V. RESULTS 

The simplicity and ease of implementation of the approach 

can be readily observed from the illustration above. 

Prescriptive and predictive analytics are two ideas that are 

used in this strategy. The optimal combination of NPIs to stop 

the pandemic from spreading is suggested after analyzing all 

the variables that contribute to the infection's propagation 

within the population. Neither advanced mathematical 

understanding nor programming experience are needed to use 

this concept. In the near future, this very basic model has the 

potential to develop into a highly advanced model.  

VI. DISCUSSION 

The xAUS table is an assumption-based table. These 

presumptions can be useful in the management of different 

types infectious diseases. In order to increase its forecasting 

accuracy, we occasionally need to make adjustments to some 

of the variables and assumptions that are applied to it. 

VII. CONCLUSION 

This is a simple mathematical model to predict short-term 

future trends. This model can be used to control the spread of 

different types of infectious diseases. This model also helps 

in infection discovery and tracks the status of all the 
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infections until they are completely removed. The cost 

involved in implementing this model is very low when 

compared to other models. This model also relies on the 

quality and accuracy of the collected data. This model relies 

on manual input of data and calculations. Eventually, 

automation software will be able to automate this concept. 

REFERENCES 

[1] Ioannidis, J. P., Cripps, S., & Tanner, M. A. (2022). 

Forecasting for COVID-19 has failed. International journal of 

forecasting, 38(2), 423-438. 

[2] Houdroge, F., Palmer, A., Delport, D., Walsh, T., Kelly, S. L., 

Hainsworth, S. W., ... & Scott, N. (2023). Frequent and 

unpredictable changes in COVID-19 policies and restrictions 

reduce the accuracy of model forecasts. Scientific Reports, 

13(1), 1398. 

[3] Siettos, C. I., & Russo, L. (2013). Mathematical modeling of 

infectious disease dynamics. Virulence, 4(4), 295-306. 


